US009342353B2

a2z United States Patent (10) Patent No.: US 9,342,353 B2
Cherel et al. (45) Date of Patent: May 17, 2016
(54) TECHNIQUES FOR IMPLEMENTING (56) References Cited
INFORMATION SERVICES WITH TENANT U.S. PATENT DOCUMENTS
SPECIFIC SERVICE LEVEL AGREEMENTS o
(71) Applicant: INTERNATIONAL BUSINESS 2009/0288084 Al* 112009 Astete GOGF 9/45533
pplicant: 718/1
MACHINES CORPORATION, 2011/0252420 Al* 10/2011 Tungccceenee. GO6F 9/45533
Armonk, NY (US) . 718/1
2012/0030168 Al* 2/2012 Weissenberger et al. ... 707/611
R 2012/0089980 Al* 4/2012 Sharpccccceee GOGF 9/45558
(72) Inventors: Thomas Cherel, Saint-Eustache (FR); ap 718/1
Ivan Matthew Milman, Austin, TX 2012/0096271 Al* 4/2012 Ramarathinam ... HO4L 63/0807
(US); Martin Oberhofer, Bondorf (DE); 2012/0173581 Al* 7/2012 Hartig et al ;(l)gg;%
. igetal. ...
Donald Andrew Padilla, Albuquerque, 2013/0204849 Al* 82013 Chacko ..oococoeveen GOGF 3/0604
NM (US) 707/692
2014/0006731 Al* 12014 Uluskiccccoeveeene GOG6F 3/0604
(73) Assignee: INTERNATIONAL BUSINESS 2014/0019335 Al* 1/2014 MacDonald et al 7;(1)/51/23
acDonald etal.
MACHINES CORPORATION, 2014/0032228 Al* 12014 Johricccccoeens GOGF 21/6227
Armonk, NY (US) 705/1.1
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35 Harshavardhan Jegadeesan et al., “A Method to Support Variability of
U.S.C. 154(b) by 218 days. Enterprise Services on the Cloud”, IEEE International Conference on
21y Appl No.: 13/646.700 Cloud Computing, 2009, IEEE.
(21) Appl. No.: ’ (Continued)
(22) Filed: Oct. 6, 2012)
Primary Examiner — Ruolei Zong
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Russell Ng PLLC; William
Stock
US 2014/0101299 A1 Apr. 10, 2014
(51) Int.Cl (57) ABSTRACT
G0;$ F 1 5/173 (2006.01) A Fechl.lique for sele.ct@ng an info.rmation service implemen-
tation includes receiving a service request that includes a
GOG6F 9/46 (2006.01) . - . . : .
tenant identifier that uniquely identifies a calling tenant.
HO4L 12724 (2006.01)
) US. Cl Transformation logic to service the service request is selected
(52) US.CL) based on the received tenant identifier. One or more data
CPC s GOGI 9/468 (2013.01); HO4L 41/5051 sources and one or more data targets are selected for the
(2013.01); HO4L 41/5096 (2013.01) service request based on the received tenant identifier. Data
(58) Field of Classification Search from the selected data sources is processed using the selected
CPC ..cceeee. GO6F 17/30528; GO6F 9/5077; HO4AL transformation logic and the processed data is stored at the
USPC 709/293 21 022/ 53%; selected data targets.

See application file for complete search history.

20 Claims, 6 Drawing Sheets

Computer System/Server 12

Processor(s) 16

Memory 28

O
Storage
| Cache 32 | e
Cache 32 40

18._3—

/O Interface(s) 22

P T 1]
[Mo spr s |

Network Adapter 20

!

External
Device(s) 14

Display 24

US 9,342,353 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS
Julia Schroeter et al., “Towards Modeling a Variable Architecture for
Multi-Tenant SaaS-Application”, Proceedings of Sixth International
Workshop on Variability Modelling of Software-Intensive Systems
(VaMoS ’12), Jan. 2012, ACM.

Ralph Mietzner et al., “Variability Modeling to Support Customiza-
tion and Deployment of Multi-Tenant-Aware Software as a Service
Applications”, ICSE Workshop on Principles of Engineering Ser-
vices Oriented Systems, 2009, IEEE.

* cited by examiner

US 9,342,353 B2

Sheet 1 of 6

May 17, 2016

U.S. Patent

LS
1 (s)eameQ
ve feldsiq e [eusexg
0z J8)depy spomiaN » Tz (s)eoepeiu) Ofl
|_<— 8l
im— —
— oy 28 ayoen 9} (s)08s8204d
7e Waishs)
abelois N » 0T AVY
8z Aoway

71 Janlag/walsAg Jeindwio)

U.S. Patent May 17, 2016 Sheet 2 of 6 US 9,342,353 B2

54B

FIG. 2

[
0

agee ol
S o
RIS

54C
10
54A —

US 9,342,353 B2

Sheet 3 of 6

May 17, 2016

U.S. Patent

09

¢ DI
aiemyos BunyiomeN

188G = swaIsAs

alemyog uoneolddy s6eI0)g

aseqejeq HOMIEN @nal

SWaysAg sjoniag SSWELUIB
@IBIUSIBPEIE @SAUBSX o ey
NEl gy

2J8MYJOS pUB BIEMpIEH

o

29

suogeoyddy womeN efeio)g sienag -ONEZIEMHIA
SJUBID [BNMIA [ENUIA [ENHIA [enkiA [enpIA
) [= o S 1 | N
uonoun4 Juswabeuep
wewsabeuep| | Aunseg | [Buioud pue
JuBwn4 pue 1OAOT BuLBIO Buuoisinoid
Buiuueld v1s SOIIBS |ejiod 80In0s8Yy
i 198M) 99
<
/ SPEOPLOA
fianieq Juowsobeuepy uonefineN
Buissaooid | | uogeonpg| [elokosy pue pue
Buissaoold sophleuy | lwoosssery| huewdopneg || BUuddEW
uonoesued | ejeQ [BALHIA 8lemyjog

US 9,342,353 B2

Sheet 4 of 6

May 17, 2016

U.S. Patent

60% WA

¥ HIL

30¥ JenssS

107 NA

901 Joniag

S0Y WA

Y0P Jonag

107 WA

Z0¥ Jonieg
juswsbeuep

0Zy Juaip
JBWINSUDD pPnojD

US 9,342,353 B2

Sheet 5 of 6

May 17, 2016

U.S. Patent

009

10S 9@

10V A

$'Bri

gocy usip
Jawnsuod pnojD

t

»

(o]
fa)
Lo
m
[

G0G 9a

So¥ WA

|
_
_
v @

107 INWA

Z0¥ Jonieg
Juswabeuepy

A 4

[

~ — — — — =

i
_
_
|
I

¥

YOZP usio
JBWNSU09 pnojD

J0¢y WelP
Jawnsuoo pnojy

US 9,342,353 B2

Sheet 6 of 6

May 17, 2016

U.S. Patent

919 cmm 9519
019)
$1901e) Elep pajosjes mHoQE\mme:Ow:
Je $80.N0S BJep Pojos|es €12 10915
719 =1 wou ejep pessaooid ai0jg 19
ry F 3 S
oibo| uonew.ojsue. asuodsal
910] uoneuLIOjsuL) 109[8S al ueus) pijeAy|
pejosles Buisn s80.nos 3
ep Pa}os[es $$8001
e d

»

ql ueus] oN
Z1senbal
r 709 Soinieg oN
009

US 9,342,353 B2

1

TECHNIQUES FOR IMPLEMENTING
INFORMATION SERVICES WITH TENANT
SPECIFIC SERVICE LEVEL AGREEMENTS

BACKGROUND

1. Technical Field

The present invention generally relates to information ser-
vices and in particular to techniques for implementing infor-
mation services with tenant specific service level agreements.

2. Description of the Related Art

In general, cloud computing refers to Internet-based com-
puting where shared resources, software, and information are
provided to users of computer systems and other electronic
devices (e.g., mobile phones) on demand, similar to the elec-
tricity grid. Adoption of cloud computing has been aided by
the widespread adoption of virtualization, which is the cre-
ation of a virtual (rather than actual) version of something,
e.g., an operating system, a server, a storage device, network
resources, etc. A virtual machine (VM) is a software imple-
mentation of a physical machine (e.g., a computer system)
that executes instructions like the physical machine. VMs are
usually categorized as system VMs or process VMs. A system
VM provides a complete system platform that supports the
execution of a complete operating system (OS). In contrast, a
process VM is usually designed to run a single program and
support a single process. A characteristic of a VM is that
application software running on the VM is limited to the
resources and abstractions provided by the VM. System VMs
(also referred to as hardware VMs) allow the sharing of the
underlying physical machine resources between different
VMs, each of which executes its own OS. The software that
provides the virtualization and controls the VMs is typically
referred to as a VM monitor (VMM) or hypervisor. A hyper-
visor may run on bare hardware (Type 1 or native VMM) or on
top of an operating system (Type 2 or hosted VMM).

Cloud computing provides a consumption and delivery
model for information technology (IT) services based on the
Internet and involves over-the-Internet provisioning of
dynamically scalable and usually virtualized resources.
Cloud computing is facilitated by ease-of-access to remote
computing sites (via the Internet) and frequently takes the
form of web-based tools or applications that a cloud con-
sumer or tenant can access and use through a web browser, as
if the tools or applications were a local program installed on
a computer system of the tenant. Commercial cloud imple-
mentations are generally expected to meet quality of service
(QoS) requirements of consumers and typically include ser-
vice level agreements (SLAs). Tenants avoid capital expen-
ditures by renting usage from a cloud vendor (i.e., a third-
party provider). In a typical cloud implementation, tenants
consume resources as a service and pay only for resources
used.

An Internet point-of-presence (POP) is an access point to
the Internet that may house servers, routers, gateways, asyn-
chronous transfer mode (ATM) switches, and/or digital/ana-
log call aggregators. An Internet POP may be, for example,
part of the facilities of a telecommunications provider that an
Internet service provider (ISP) rents or at a location separate
from the telecommunications provider. A typical ISP may
have thousands of POPs, each of which corresponds to a
different physical location. In a POP cloud, it is usually
unclear to a tenant where data of the tenant resides, as a
location of an access point (e.g., gateway) appears to the
tenant to be the location of the data.

BRIEF SUMMARY

Disclosed are a method, a data processing system, and a
computer program product (embodied in a computer-read-

10

20

40

45

50

65

2

able storage medium) for implementing information services
with tenant specific service level agreements in cloud com-
puting environments.

A technique for selecting an information service imple-
mentation includes receiving a service request that includes a
tenant identifier that uniquely identifies a calling tenant.
Transformation logic to service the service request is selected
based on the received tenant identifier. One or more data
sources and one or more data targets are selected for the
service request based on the received tenant identifier. Data
from the selected data sources is processed using the selected
transformation logic and the processed data is stored at the
selected data targets.

The above summary contains simplifications, generaliza-
tions and omissions of detail and is not intended as a com-
prehensive description of the claimed subject matter but,
rather, is intended to provide a brief overview of some of the
functionality associated therewith. Other systems, methods,
functionality, features and advantages of the claimed subject
matter will be or will become apparent to one with skill in the
art upon examination of the following figures and detailed
written description.

The above as well as additional objectives, features, and
advantages of the present invention will become apparent in
the following detailed written description.

BRIEF DESCRIPTION OF THE DRAWINGS

The description of the illustrative embodiments is to be
read in conjunction with the accompanying drawings,
wherein:

FIG. 1 depicts a relevant portion of an exemplary cloud
computing node that is configured according to an embodi-
ment of the present disclosure;

FIG. 2 depicts a relevant portion of an exemplary cloud
computing environment that is configured according to an
embodiment of the present disclosure;

FIG. 3 depicts exemplary abstraction model layers of a
cloud computing environment configured according to an
embodiment of the present disclosure;

FIG. 4 is a diagram of a relevant portion of an exemplary
cloud computing environment that includes a management
server (data processing system) configured in accordance
with various embodiments of the present disclosure to imple-
ment information services with tenant specific service level
agreements;

FIG. 5 is a diagram of a relevant portion of an exemplary
cloud computing environment that includes a management
server (data processing system) configured in accordance
with various embodiments of the present disclosure to imple-
ment information services with tenant specific service level
agreements; and

FIG. 6 is a flow chart for an exemplary process that imple-
ments information services with tenant specific service level
agreements according to various embodiments of the present
disclosure.

DETAILED DESCRIPTION

The illustrative embodiments provide a method, a data
processing system, and a computer program product (embod-
ied in a computer-readable storage medium) for implement-
ing information services with tenant specific service level
agreements in cloud computing environments.

In the following detailed description of exemplary embodi-
ments of the invention, specific exemplary embodiments in
which the invention may be practiced are described in suffi-

US 9,342,353 B2

3

cient detail to enable those skilled in the art to practice the
invention, and it is to be understood that other embodiments
may be utilized and that logical, architectural, programmatic,
mechanical, electrical and other changes may be made with-
out departing from the spirit or scope of the present invention.
The following detailed description is, therefore, not to be
taken in a limiting sense, and the scope of the present inven-
tion is defined by the appended claims and equivalents
thereof.

It is understood that the use of specific component, device
and/or parameter names are for example only and not meant
to imply any limitations on the invention. The invention may
thus be implemented with different nomenclature/terminol-
ogy utilized to describe the components/devices/parameters
herein, without limitation. Each term utilized herein is to be
given its broadest interpretation given the context in which
that term is utilized.

According to one aspect of the present disclosure, tech-
niques are disclosed herein that increase software stack shar-
ing capabilities by employing multi-tenant functions and ser-
vice polymorphisms.

It should be understood that although this disclosure
includes a detailed description on cloud computing, imple-
mentation of the teachings recited herein are not limited to a
cloud computing environment. Rather, embodiments of the
present invention are capable of being implemented in con-
junction with any other type of computing environment now
known or later developed, including client-server and peer-
to-peer computing environments. Cloud computing is a
model of service delivery for enabling convenient, on-de-
mand network access to a shared pool of configurable com-
puting resources (e.g., networks, network bandwidth, servers,
processing, memory, storage, applications, virtual machines,
and services) that can be rapidly provisioned and released
with minimal management effort or interaction with a pro-
vider of the service. A cloud model may include at least five
characteristics, at least three service models, and at least four
deployment models.

Cloud characteristics may include: on-demand self-ser-
vice; broad network access; resource pooling; rapid elastic-
ity; and measured service. Cloud service models may include:
software as a service (SaaS); platform as a service (PaaS); and
infrastructure as a service (IaaS). Cloud deployment models
may include: private cloud; community cloud; public cloud;
and hybrid cloud.

On-demand self-service means a cloud consumer can uni-
laterally provision computing capabilities, such as server
time and network storage, as needed automatically without
requiring human interaction with a service provider. Broad
network access means capabilities are available over a net-
work and accessed through standard mechanisms that pro-
mote use by heterogeneous thin or thick client platforms (e.g.,
mobile phones, laptops, and personal digital assistants
(PDAs)). Resource pooling means computing resources of a
provider are pooled to serve multiple consumers using a
multi-tenant model, with different physical and virtual
resources dynamically assigned and reassigned according to
demand. In resource pooling there is a sense of location
independence in that the consumer generally has no control or
knowledge over the exact location of the provided resources
but may be able to specify location at a higher level of abstrac-
tion (e.g., country, state, or datacenter).

Rapid elasticity means capabilities can be rapidly and elas-
tically provisioned, in some cases automatically, to quickly
scale-out and be rapidly released to quickly scale-in. To the
consumer, the capabilities available for provisioning often
appear to be unlimited and can be purchased in any quantity

10

15

20

25

30

35

40

45

50

55

60

65

4

atany time. Measured service means cloud systems automati-
cally control and optimize resource use by leveraging a meter-
ing capability at some level of abstraction that is appropriate
to the type of service (e.g., storage, processing, bandwidth,
and active user accounts). Resource usage can be monitored,
controlled, and reported providing transparency for both the
provider and consumer of the utilized service.

In an SaaS model the capability provided to the consumer
is to use applications of a provider that are running on a cloud
infrastructure. The applications are accessible from various
client devices through a thin client interface such as a web
browser (e.g., web-based e-mail). In the SaaS model, the
consumer does not manage or control the underlying cloud
infrastructure (including networks, servers, operating sys-
tems, storage, or even individual application capabilities),
with the possible exception of limited user-specific applica-
tion configuration settings.

In a PaaS model a cloud consumer can deploy consumer-
created or acquired applications (created using programming
languages and tools supported by the provider) onto the cloud
infrastructure. In the PaaS model, the consumer does not
manage or control the underlying cloud infrastructure (in-
cluding networks, servers, operating systems, or storage), but
has control over deployed applications and possibly applica-
tion hosting environment configurations.

In an IaaS service model a cloud consumer can provision
processing, storage, networks, and other fundamental com-
puting resources where the consumer is able to deploy and run
arbitrary software (which can include operating systems and
applications). In the IaaS model, the consumer does not man-
age or control the underlying cloud infrastructure but has
control over operating systems, storage, deployed applica-
tions, and possibly limited control of select networking com-
ponents (e.g., host firewalls).

In a private cloud deployment model the cloud infrastruc-
ture is operated solely for an organization. The cloud infra-
structure may be managed by the organization or a third party
and may exist on-premises or off-premises. In a community
cloud deployment model the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). The cloud infrastruc-
ture may be managed by the organizations or a third party and
may exist on-premises or off-premises. In a public cloud
deployment model the cloud infrastructure is made available
to the general public or a large industry group and is owned by
an organization selling cloud services.

In a hybrid cloud deployment model the cloud infrastruc-
ture is a composition of two or more clouds (private, commu-
nity, or public) that remain unique entities but are bound
together by standardized or proprietary technology that
enables data and application portability (e.g., cloud bursting
for load-balancing between clouds). In general, a cloud com-
puting environment is service oriented with a focus on state-
lessness, low coupling, modularity, and semantic interoper-
ability. At the heart of cloud computing is an infrastructure
that includes a network of interconnected nodes.

With reference to FIG. 1, a schematic of an exemplary
cloud computing node 10 is shown. Cloud computing node 10
is only one example of a suitable cloud computing node and
is not intended to suggest any limitation as to the scope of use
or functionality of embodiments described herein. Regard-
less, cloud computing node 10 is capable of being imple-
mented and/or performing any of the functionality set forth
herein. Cloud computing node 10 includes a computer sys-
teny/server 12, which is operational with numerous other gen-
eral purpose or special purpose computing system environ-

US 9,342,353 B2

5

ments or configurations. Examples of well-known computing
systems, environments, and/or configurations that may be
suitable for use with computer system/server 12 include, but
are not limited to, personal computer systems, server com-
puter systems, thin clients, thick clients, hand-held or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer
systems, and distributed cloud computing environments that
include any of the above systems or devices, and the like.

Computer system/server 12 may be described in the gen-
eral context of computer system-executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 12 may be prac-
ticed in distributed cloud computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
cloud computing environment, program modules may be
located in both local and remote computer system storage
media including memory storage devices.

As shown in FIG. 1, computer system/server 12 (in cloud
computing node 10) is illustrated in the form of a general-
purpose computing device. The components of computer sys-
teny/server 12 may include, but are not limited to, one or more
processors or processing units (including one or more pro-
cessor cores) 16, a system memory 28, and a bus 18 that
couples various system components (including system
memory 28) to processors 16. Bus 18 represents one or more
of'any of several types of bus structures, including a memory
bus or memory controller bus, a peripheral bus, an accelerated
graphics port, and a processor or local bus using any of a
variety of bus architectures. By way of example, and not
limitation, such architectures include the industry standard
architecture (ISA) bus, the micro channel architecture (MCA)
bus, the enhanced ISA (EISA) bus, the video electronics
standards association (VESA) local bus, and the peripheral
components interconnect (PCI) bus.

Computer system/server 12 typically includes a variety of
computer system readable media. Such media may be any
available media that is accessible by computer system/server
12, and includes both volatile and non-volatile media, remov-
able and non-removable media. System memory 28 can
include computer system readable media in the form of vola-
tile memory, such as random access memory (RAM) 30 and/
or cache memory 32.

Computer system/server 12 may further include other
removable/non-removable, volatile/non-volatile computer
system storage media. By way of example only, storage sys-
tem 34 can be provided for reading from and writing to a
non-removable, non-volatile magnetic media (not shown and
typically called a “hard drive”). Although not shown, a mag-
netic disk drive for reading from and writing to a removable,
nonvolatile magnetic disk (e.g., a “floppy disk™), and an opti-
cal disk drive for reading from or writing to a removable,
non-volatile optical disk such as a CD-ROM, DVD-ROM or
other optical media can be provided. In such instances, each
can be connected to bus 18 by one or more data media inter-
faces.

As will be further depicted and described herein, memory
28 may include at least one program product having a set
(e.g., at least one) of program modules that are configured to
carry out the functions of various disclosed embodiments.
Program/utility 40, having a set (at least one) of program
modules 42, may be stored in memory 28 by way of example,

40

45

6

and not limitation, as well as an operating system, one or more
application programs, other program modules, and program
data. Each of the operating system, one or more application
programs, other program modules, and program data or some
combination thereof, may include an implementation of a
networking environment. Program modules 42 generally
carry out the functions and/or methodologies of embodiments
of the invention as described herein.

Computer system/server 12 may also communicate with
one or more external devices 14 such as akeyboard, a pointing
device, a display 24, one or more devices that enable a user to
interact with computer system/server 12, and/or any devices
(e.g., network card, modem, etc.) that enable computer sys-
tem/server 12 to communicate with one or more other com-
puting devices. Such communication can occur via Input/
Output (I/O) interfaces 22. Still yet, computer system/server
12 can communicate with one or more networks such as a
local area network (LLAN), a general wide area network
(WAN), and/or a public network (e.g., the Internet) via net-
work adapter 20. As depicted, network adapter 20 communi-
cates with the other components of computer system/server
12 via bus 18. It should be understood that although not
shown, other hardware and/or software components can be
used in conjunction with computer system/server 12.
Examples, include, but are not limited to: microcode, device
drivers, redundant processing units, external disk drive
arrays, redundant array of inexpensive disk (RAID) systems,
tape drives, and data archival storage systems, etc.

With reference to FIG. 2, an illustrative cloud computing
environment 50 is depicted. As shown, cloud computing envi-
ronment 50 comprises one or more cloud computing nodes 10
with which local computing devices used by cloud consum-
ers, such as, for example, personal digital assistant (PDA) or
cellular telephone 54 A, desktop computer 54B, laptop com-
puter 54C, and/or automobile computer system 54N, may
communicate. Nodes 10 may communicate with one another
and may be grouped (not shown) physically or virtually, in
one or more networks, such as private, community, public, or
hybrid clouds as described herein, or a combination thereof.
In this manner, cloud computing environment 50 can offer
infrastructure, platforms and/or software as services for
which a cloud consumer does not need to maintain resources
on a local computing device. It should be understood that the
types of computing devices 54A-N shown in FIG. 2 are
intended to be illustrative only and that computing nodes 10
and cloud computing environment 50 can communicate with
any type of computerized device over any type of network
and/or network addressable connection (e.g., using a web
browser).

With reference to FIG. 3, a set of functional abstraction
layers provided by cloud computing environment 50 (FIG. 2)
is shown. It should be understood that the components, layers,
and functions shown in FIG. 3 are intended to be illustrative
only and embodiments of the invention are not limited
thereto. As depicted in FIG. 3, cloud computing environment
50 includes a hardware and software layer 60, a virtualization
layer 62, a management layer 64, and a workloads layer 66.

Hardware and software layer 60 includes various hardware
and software components. As one example, the hardware
components may include mainframes (e.g., IBM® zSeries®
systems), reduced instruction set computer (RISC) architec-
ture based servers (e.g., IBM pSeries® systems), IBM
xSeries® systems, IBM BladeCenter® systems, storage
devices, networks and networking components. As another
example, the software components may include network
application server software (e.g., IBM WebSphere® applica-
tion server software) and database software (e.g., IBM DB2®

US 9,342,353 B2

7

database software). IBM, zSeries, pSeries, xSeries, Blade-
Center, WebSphere, and DB2 are trademarks of International
Business Machines Corporation registered in many jurisdic-
tions worldwide.

Virtualization layer 62 provides an abstraction layer in
which virtual entities (e.g., virtual servers, virtual storage,
virtual networks (including virtual private networks), virtual
applications and operating systems, and virtual clients are
included. As previously discussed, these virtual entities may
be accessed by clients of cloud computing environment 50
on-demand. The virtual entities are controlled by one or more
virtual machine monitors (VMMs) that may, for example, be
implemented in hardware and software layer 60, virtualiza-
tion layer 62, or management layer 64.

Management layer 64 provides various functions (e.g.,
resource provisioning, metering and pricing, security, user
portal, service level management, and SLA planning and
fulfillment). The resource provisioning function provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud
computing environment. The metering and pricing function
provides cost tracking (as resources are utilized within the
cloud computing environment) and billing or invoicing for
consumption of the utilized resources. As one example, the
utilized resources may include application software licenses.

The security function provides identity verification for
cloud consumers and tasks, as well as protection for data and
other resources. The user portal function provides access to
the cloud computing environment for consumers and system
administrators. The service level management function pro-
vides cloud computing resource allocation and management
such that required service levels are met. For example, the
security function or service level management function may
be configured to limit deployment/migration of a virtual
machine (VM) image to geographical location indicated to be
acceptable to a cloud consumer. The service level agreement
(SLA) planning and fulfillment function provides pre-ar-
rangement for, and procurement of, cloud computing
resources for which a future requirement is anticipated in
accordance with an SLA.

Workloads layer 66 provides examples of functionality for
which the cloud computing environment may be utilized.
Examples of workloads and functions which may be provided
from this layer include: mapping and navigation; software
development and lifecycle management; virtual classroom
education delivery; data analytics processing; and transaction
processing.

Information services are one of the cornerstones of infor-
mation technology (IT) infrastructures. In general, informa-
tion services may be defined as the layer of a service oriented
architecture (SOA) that provides an application access to
information, while hiding the details of the underlying data
store (so the data store can evolve and change without requir-
ing the application to change and the application can provide
the services, as needed), and allows a service provider to
enforce policies (e.g., business integrity policies and security
policies) at a layer that is consistent with the business view of
the data. The demand for processing larger data volumes
within smaller processing windows increases the operational
cost of information services. To address the increasing opera-
tional cost of information services, cloud computing has been
devised to offer the ability to share infrastructure cost among
multiple consumers or tenants. According to one aspect of the
present disclosure, a server is configured to check tenant
identifiers (IDs) when requests for information services are
received and route the tenant requests to an agent based on the
tenant IDs. In various embodiments, the agent is configured to

10

15

20

25

30

35

40

45

50

55

60

65

8

implement tenant specific service level agreements (SLAs) in
selecting transformation logic and data sources/targets to be
utilized in servicing the tenant requests.

Information services sharing in multi-tenant cloud envi-
ronments has usually been limited to the sharing of hardware,
as a software stack usually tends to be specific to each tenant
since data and data transformation are usually tenant specific.
Multi-tenant cloud environments usually employ unique
information service endpoints and may implement interfaces
that are specific for each tenant. Conventional multi-tenant
cloud environments have generally lacked the flexibility to
create higher level composed services (through, for example,
an enterprise service bus (ESB)) that might also need to be
multi-tenant.

According to one or more embodiments, techniques are
disclosed that increase software stack sharing capabilities by
employing multi-tenant functions and service polymor-
phisms. As used herein, ‘polymorphism’ refers to the ability
to define a common service interface, while allowing changes
in the way an underlying service is routed, assigned
resources, and implemented based on tenant specific consid-
erations. In this manner, common implementations and
resources may be utilized by multiple tenants, when appro-
priate, to facilitate cost savings via infrastructure sharing.

According to aspects of the present disclosure, common
information service interfaces and endpoints are employed
(to the extent permissible) in order to maximize the sharing of
the underlying infrastructure. Employing service implemen-
tation polymorphism based on a calling tenant facilitates
different behaviors that may be required for different tenants.
In general, information services are often used as part of a
higher level service composition, e.g., a more complex master
data management service, an ESB service, or a composite
service component architecture (SCA). Employing a com-
mon service interface and endpoint for underlying informa-
tion services allows higher level composition components to
be multi-tenant capable, while still maintaining a relatively
simple composition. According to one or more aspects of the
present disclosure, tenant specific polymorphic implementa-
tions are implemented with acommon interface and endpoint.

Service tenant polymorphism can take various forms. For
example, a completely different service implementation can
be provided to different tenants or the same service imple-
mentation can be reused with different data sources/targets
for different tenants. According to one or more embodiments,
the selection of the service implementation is performed
dynamically at runtime, based on the service caller (i.e., the
tenant). In traditional object oriented polymorphism, the ser-
vice implementation is determined at service instantiation,
usually using a factory pattern. According to one or more
aspects of the present disclosure, a dynamic service imple-
mentation selection mechanism (that is based on tenant iden-
tity) is employed at the time of service invocation.

In general, SLAs have traditionally been directed toward
performance, availability, and scalability. According to the
present disclosure, implementing information service tenant
polymorphisms facilitates extending the semantics of SL.As
to encompass more information oriented concepts, e.g., the
quality or quantity of reference data or the algorithm or algo-
rithms used for data processing, such as specific standardized
or matching algorithms.

The disclosed techniques generally increase the ability to
share an information services infrastructure. With a common
service interface and endpoint, middleware that hosts service
entry points can be completely shared by all tenants. In gen-
eral, middleware is responsible for the initial decoding of a
service request (e.g., decoding a simple object access proto-

US 9,342,353 B2

9

col (SOAP) message) and the selection of the service imple-
mentation to use according to the calling tenant. Typically, the
initial decoding of a service request and the selection of the
service implementation are not the time-consuming part of an
information service invocation and are not subject to many
SLA constraints that are different between tenants, which
facilitates further sharing of the services infrastructure. As
such, information service providers can usually focus more
on service business logic (i.e., information processing) and
less on front-end hosting infrastructure.

It should be appreciated that service implementations can
take various shapes and forms, including the off-loading of
processing to a separate server or a dedicated data processing
engine, which may be required for certain tenant SLA con-
straints, e.g., data isolation or processing power capabilities.
The extension of traditional SLA semantics to more informa-
tion service oriented concepts, e.g., data providers or data
processing algorithms, facilitates added customer value by
providing guarantees on the data processing mechanism. The
extension of traditional SLA semantics to information service
oriented concepts also usually provides more flexibility and
options in the pricing definitions of an information as a ser-
vice offering.

In general, information service polymorphism (i.e., how to
provide various information service implementations for the
same service interface and endpoint) may be applied to trans-
formation logic and/or data sources/targets. As used herein,
‘transformation logic’ refers to the algorithm (or algorithms)
used to transform data, ‘data sources’ refers to the locations of
the data to be transformed, and ‘data targets’ refers to the
locations where the transformed data is stored. In general, an
infrastructure should be capable of configuring the transfor-
mation logic and/or the data sources/targets in a tenant spe-
cific manner in order to maximize sharing capabilities and to
provide maximum flexibility in information service imple-
mentations.

Transformation logic polymorphism may be achieved by
dissociating the way the information service is exposed to
callers (tenants). In a typical implementation, the service
interface and endpoint are the parts that are exposed to callers
and that are shared by all tenants. The service interface and
endpoint may be hosted in a shared infrastructure that is
responsible for receiving service requests, performing the
service format specific decoding (e.g., the decoding of a
SOAP message), and selecting and sending the decoded
request to the right service implementation according to the
current tenant.

The service implementation (or service provider) provides
the actual data processing and transformation logic and may
take various shapes and/or forms. For example, the service
implementation may vary between a relatively simple piece
of Java code that runs directly within the shared infrastructure
to something that is more complex but more flexible where
data processing is off-loaded to a dedicated data processing
engine. For a given information service, a service provider
interface is defined to include a single process request opera-
tion, taking as input the service input arguments and returning
the service output arguments in a service agnostic format
(e.g., Java data objects (JDOs), or service data objects
(SDOs)). Tenant specific implementations may be provided
by adding an implementation of the service provider inter-
face.

As one example, an InfoSphere® information services
director (ISD) is a typical implementation of the more com-
plex and flexible case. As is known, the InfoSphere® ISD is
configured to facilitate publishing tasks as reusable services
in an SOA. In one or more embodiments, the shared infra-

10

15

20

25

30

35

40

45

50

55

60

65

10

structure is provided by an ISD server that may be hosted
within, for example, a WebSphere® application server. In this
embodiment, the ISD server provides the handling and
decoding of an initial service request. The ISD server then
dispatches the request to a specialized data processing and
transformation engine, e.g., an InfoSphere® DataStage/
QualityStage, or a DB2® (which is a relational model data-
base server) federation. In a disclosed embodiment, dispatch
is performed through dedicated ISD agents that are the gate-
ways between the shared infrastructure and the data transfor-
mation engines.

With reference to FIG. 4, a cloud computing environment
400 is illustrated that is configured to process an information
service request with tenant specific routing capabilities,
according to an aspect of the present disclosure. Cloud com-
puting environment 400 includes a management server (data
processing system) 402 that implements a virtual machine
monitor (VMM) 401 and is in communication with a cloud
consumer client (tenant) 420 and exemplary servers 404, 406,
and 408. Management server 402, which handles and decodes
service requests may be, for example, an ISD server that
functions as a shared interface for multiple tenants. Server
404 executes a virtual machine (VM) 405, server 406
executes a VM 407, and server 408 executes a VM 409. While
only three servers 404, 406, and 408 are illustrated in cloud
computing environment 400, it should be appreciated that
more or less than three servers may be implemented within a
cloud computing environment configured according to the
present disclosure. Moreover, while servers 404, 406, and 408
are only illustrated as executing a single VM, it should be
appreciated that servers 404, 406, and 408 may each execute
one or more VMs and may each execute one or more VMMs,
which may be implemented, for example, in hardware and
software layer 60, virtualization layer 62, or as a resource
provisioning function in management layer 64 of computing
environment 50.

Management server 402, as well as servers 404, 406, and
408, may be configured in a similar manner as computer
system/server 12 of FIG. 1. Management server 402 may, for
example, be implemented within hardware and software layer
60 of computing environment 50. In this example, servers
404, 406, and 408 may be in the same or different geographi-
cal locations within the United States or other countries.

VMs 405, 407, and 409 may each be configured to support
multiple tenants based on tenants assigned to the VMs 405,
407, and 409 by one or more agents (which may be included
within VMM 401). In determining which tenants to assign to
which VMs 405, 407, and 409, VMM 401 may consider
whether a current workload of VMs 405, 407, and 409 allows
for an additional tenant workload while still meeting tenant
specific SLAs. VMM 401 may, for example, deploy/migrate
workload dynamically to one or more other servers within
cloud computing environment 400 to meet tenant specific
SLAs. Management server 402 is configured to receive ser-
vice requests from tenant 420 and route the service requests to
an agent (e.g., based on a tenant ID) that selects transforma-
tion logic and data sources/targets to service the request (e.g.,
by routing service requests to one of VMs 405, 407, and 409
for service) based on the tenant ID.

With reference to FIG. 5, a cloud computing environment
500 is illustrated that is configured to process information
service requests with tenant specific routing capabilities,
according to an aspect of the present disclosure. Cloud com-
puting environment 500 includes management server 402 that
implements VMM 401 and is in communication with tenants
420A, 420B, and 420C. As is illustrated, management server
402 is also in communication with VMs 405 and 407. VM 405

US 9,342,353 B2

11

is communication with database (DB) 505 and DB 509 and
VM 407 is in communication with DB 507. As is shown in
FIG. 5, management server 402 provides an interface to
receive service requests from tenants 420A, 420B, and 420C
and to provide responses to tenants 420A, 420B, and 420C.
An agent, e.g., implemented within VMM 401 or elsewhere
within management server 402, is configured to dynamically
route tenant requests based on tenant specific SLAs, which
are indicated by tenant IDs. As is shown in FIG. 5, services
requests for tenants 420A and 420B are dynamically routed to
VM 405 (based on tenant IDs for tenants 420A and 420B) and
service requests for tenant 420C are dynamically routed to
VM 407 (based on a tenant ID for tenant 420C). In this
example, VM 405 implements the same transformation logic
for tenants 420 A and 420B and VM 407 implements different
transformation logic for tenants 420C. It should be appreci-
ated that data sources/targets for tenants 420A and 420B may
be provided by DB 505 and/or DB 509 and data sources/
targets for tenant 420C are provided by DB 507. Tenants
420A and 420B may, for example, share a same database
(e.g., DB 505) or databases (e.g., DB 505 and DB 509).
Tenants 420A and 420B may employ a same schema or a
different schema for DBs 505, 507, and 509.

In one or more embodiments, transformation logic poly-
morphism can be viewed as a superset of the data sources/
targets case. For example, implementing tenant specific trans-
formation logic may fix the data sources/targets that the
transformation logic uses. In general, tenant specific data
sources/targets are valuable when transformation logic can be
shared by multiple tenants and only the data acted upon by the
transformation logic is tenant specific.

In most cases, access interfaces for data sources/targets are
standardized. For example, an access interface may take the
form of: flat files (e.g., file access application programming
interfaces (APIs)); relational database management systems
(RDBMSs) (e.g., structure query language (SQL), Java data-
base connectivity (JDBC), and open database connectivity
(ODBC) interfaces); queues/topics (e.g., a Java message ser-
vice (JMS) interface); and traditional data process engines
(e.g., InfoSphere® DataStage/QualityStage), which already
separate the physical connection information (e.g., file path,
JDBC/ODBC connection, uniform resource locators
(URLs)) from the transformation logic. According to one or
more aspects of the present disclosure, dynamic selection of
the physical connection information based on the current
tenant is implemented.

In general, selection of the information service implemen-
tation includes identification of the current tenant, selection
of'the corresponding tenant transformation logic (if any), and
selection of the tenant specific data sources and targets (if
any). The identification of the tenant may be provided by the
entry-point infrastructure (e.g., implemented by management
server 402) that receives the information service request. The
identity of the service caller (tenant) may be established
through any appropriate authentication mechanisms. For
example, a user identifier (ID), a user password, web services
security (WSS) tokens, or certificates can be used as a tenant
ID or utilized to identify a tenant through a group or role
memberships. Employing a user ID may be the simplest
mechanism for identifying a tenant, as the approach may
leverage identity access and management capabilities of an
existing infrastructure, since the user ID is usually the only
identity related information that is flowing through infra-
structure containers, as it is needed for authorization deci-
sions.

Tenant identification may also be completely dissociated
from a calling tenant ID. For example, a specific tenant ‘key’

25

40

45

55

65

12

may be provided as part of an information service call, or the
origin of a calling tenant (e.g., host name, or Internet protocol
(IP) address of the caller) can be used to determine an appro-
priate tenant ID. In general, a tenant ID may be derived from
the service request payload or from the service request con-
text (e.g., a hypertext transfer protocol (HTTP) header of an
HTTP based service request) or from a mapping of a user to
a tenant. In a typical implementation, the infrastructure is
flexible in the selection of where the tenant ID is derived (e.g.,
caller identity, service request payload, or service request
context) and is able to propagate the information to the infor-
mation service provider. For example, the infrastructure may
propagate context information through service implementa-
tions, explicit API input arguments, thread local variables, or
custom security attributes. For a Java based environment,
tenant specific context and associated custom attributes may
be standardized.

Once the tenant has been properly identified by the infra-
structure, the appropriate transformation logic is dynamically
selected at runtime (i.e., at the time the information service
request is received). For example, with reference to FIG. 4 an
appropriate one of VMs 405, 407, and 409, may be selected
by an agent (not separately shown) of VMM 401 to service a
received service request based on a tenant ID associated with
the received service request. In various embodiments, the
infrastructure is configured to provide a flexible and dynamic
mapping mechanism between tenant IDs and information
service implementations. In at least one embodiment, an
administrator can change the mapping through a comprehen-
sive user interface and any changes may then be taken into
account at runtime. For example, the actual transformation
logic selection process can use a simple factory based mecha-
nism to a more complex pooling mechanism. In general,
pooling mechanisms can also be used to configure and handle
traditional availability and scalability SLLA constraints.

Tenant specific routing may encompass the selection of a
specific agent (e.g., an ISD agent) to process the request. The
selection of the specific agent can be, for example, driven by
performance and scalability tenant specific SLAs. Tenant
specific routing may encompass the selection of a specific
DataStage or QualityStage job at the agent level. For
example, tenant specific routing may be driven by the data
oriented tenant SLAs (i.e., which transformation logic to
use). Typically, data sources/targets selection is technically
harder to achieve. However, there are many ways that data
sources/targets can deal with multi-tenant data (e.g., separate
databases, a same database with separate schemas, or a same
database with a same schema). In general, the selection pro-
cess may occurs relatively deep within the information ser-
vice implementation (i.e., within the transformation logic).

Tenant identification can mean different things for differ-
ent data sources and targets. Tenant identification may iden-
tify: a specific database or schema; the value of a specific
column in a table; or a user ID may be used to authenticate a
user with a data source/target. In one or more embodiments,
an infrastructure provides maximum flexibility in the data
sources and data targets selection by: properly propagating a
tenant ID through the various information service layers; and
correctly mapping the tenant ID in a data source/target spe-
cific fashion. For example, an RDBMS source might require
anextra WHERE clause in a structured query language (SQL)
statement in order to select tenant specific data. As another
example, a different data source may require access to a
completely separate database and database server (for full
tenant data isolation).

The dynamic capabilities required to properly address ten-
ant identification mapping to data sources/targets is usually a

US 9,342,353 B2

13

weak point in existing infrastructures. In the typical case ofan
RDBMS data source/target, various different levels of the
RDBMS access should ideally be fully dynamic. However,
using conventional approaches, only SQL parameters are
dynamic. According to one or more aspects of the present
disclosure, SQL parameters, SQL queries, schema, table
space, database selection, and database server selection are
all fully dynamic in order to correctly map tenant IDs to
appropriate data sources/targets. As one example, dynamic
SQL queries facilitate different queries (at least different
WHERE clauses) for different tenants.

SLAs are the typical way in which a contract for a service
subscription is specified. Conventionally, SL.As have usually
covered aspects like security, performance, scalability, and
functional aspects. While these aspects are applicable to
information services (e.g., deciding on which computer node
of a data stage (DS) parallel engine might provide the best
performance) there are information-centric and data-centric
characteristics for SLAs that are specific to information ser-
vices. From an implementation perspective, the information
specific SLA characteristics can either be implemented as an
extension to the overall service SLA or as a separate SLA
attached to the outmost service in case of a service composite
and appropriately passed to nested services, as needed. An
SLA can also be provided with many different technologies
(e.g., extensible markup language (XML) and property files
including key/value pairs).

An SLA may offer a tenant a number of different informa-
tion-centric characteristics for selection. For example, data
isolation may require a separate database, a same database
with separate schema, or a same database with a same
schema. Based on the data isolation selection, persistency
access and an SQL query may need to be dynamically
adjusted. As another example, data encryption may specify
security for data in motion, security for data in a production
database, and security for data at rest. Data in motion may
require that a secure communication channel (e.g., a secure
socket layer (SSL)) and a message encryption be separately
selectable. Data in a production database may employ data-
base encryption features either for all records/fields or only
on sensitive fields (e.g., a social security number (SSN) field).
Data at rest may require backup and protection by encryption.

Compliance with specific privacy/data protection regula-
tions may vary by country. For example, customer informa-
tion according to Swiss law has to physically reside within
Switzerland. As another example, German citizen employee
information cannot be processed by IT systems outside Ger-
many, without written approval from the employee. If legal
compliance is required, an operational model of the service
should support legal compliance with an appropriate feder-
ated architecture (e.g., an architecture than includes a mobile
device management (MDM) server). An SLA may also offer
a tenant choices on standardized services, such as address
validation, data enrichment, matching, and survivorship. If
data enrichment is selected, a third party provider for which a
tenant has a valid license key (e.g., Dun and Bradstreet, Ver-
ispan, Facebook, and LinkedIn) may be chosen. Matching
may utilize, for example, deterministic matching or probabi-
listic matching. Automatic survivorship may be applied with
a default rule-set or a tenant specific rule-set. A common
service to create an address may, for example, offer data
isolation, standardization, address validation, and/or map-
ping. For example, data isolation may include: a separate
database, a same database with separate schema, or a same
database with the same schema. In any case, based on the data
isolation selection the persistency access (including the SQL
query) may be dynamically adjusted. Assuming mapping is

10

15

20

25

30

35

40

45

50

55

60

65

14

selected, a subscribing tenant may provide a license key (or
the service provider may have an appropriate subscription
and charges the subscribing tenant for the feature).

It should be appreciated that, depending on the selections
made by a tenant, the same service interface with the same
data model may provide different capabilities based on the
SLA, thus enabling polymorphic behavior of the information
services. Data operated on by transformation logic may take
various forms. For example, data may include business meta-
data, technical metadata, operational metadata, reference
data (e.g., look-up tables and hierarchical reference data),
master data (e.g., customer data, product data, supplier data,
account data, and network asset data), operational data (e.g.,
customer relationship management (CRM) data, enterprise
resource planning (ERP) data, source control management
(SCM) data, and human resource (HR) data), unstructured
data (contracts, movies, and joint photographic experts group
(JPEG) images), and analytical data (e.g., data warchouse
(DW) data, big data, entity analytics, predictive analytics, and
data mining).

With reference to FIG. 6, a flow chart for an exemplary
process 600 that implements information services with tenant
specific SLAs, according to various embodiments of the
present disclosure, is illustrated. For ease of understanding,
process 600 is discussed in conjunction with cloud computing
environment 500 of FIG. 5. Process 600 may, for example, be
performed (at least in part) by an agent of management server
402. Process 600 begins (e.g., in response to receipt (by
management server 402) of a communication by a cloud
consumer) at block 602, at which point control transfers to
decision block 604. In block 604, management server 402
determines whether the communication is a service request
from a subscribing tenant (e.g., one of tenants 420A, 4208,
and 420C). If the communication is not a service request,
control transfers from block 604 to block 616, where process
600 terminates.

Next, in decision block 606, management server 402 deter-
mines whether a valid tenant ID is associated with the service
request. For example, management server 402 may access a
database to determine whether a valid tenant ID was received
with the service request. In the event a valid tenant ID was not
received in block 606, control transfers to block 615 where
management server 402 provides a response that indicates
that the tenant ID is invalid. Following block 615 control
transfers to block 616. In the event that the tenant ID is valid
in block 606 control transfers to block 608.

In block 608, an agent of management server 402 selects
transformation logic for processing the service request based
on the tenant ID. For example, the agent of management
server 402 may select transformation logic by selecting a
particular VM to process the service request. Next, in block
610, the agent of management server 402 selects data sources/
targets for the service request based on the tenant ID. For
example, the agent of management server 402 may select data
sources/targets by selecting a particular database that may be
accessed by the particular VM. Alternatively, by selecting a
particular VM, the agent of management server 402 may also
select a particular database as the data source and the data
target. Next, in block 612, the selected VM processes data
from the selected data sources using the selected transforma-
tion logic. Then, in block 614, the selected VM stores the
processed data from the selected data sources at selected data
targets. According to one or more embodiments of the present
disclosure, data source/target queries/requests are based on a
tenant ID. In this manner the selected transformation logic
becomes tenant specific logic. Following block 614, control
transfers to block 616 where process 600 terminates.

US 9,342,353 B2

15

In the flow chart above, the method depicted in FIG. 6 may
be embodied in a computer-readable medium containing
computer-readable code such that a series of steps are per-
formed when the computer-readable code is executed on a
computing device. In some implementations, certain steps of
the methods may be combined, performed simultaneously or
in a different order, or perhaps omitted, without deviating
from the spirit and scope of the invention. Thus, while the
method steps are described and illustrated in a particular
sequence, use of a specific sequence of steps is not meant to
imply any limitations on the invention. Changes may be made
with regards to the sequence of steps without departing from
the spirit or scope of the present invention. Use of a particular
sequence is therefore, not to be taken in a limiting sense, and
the scope of the present invention is defined only by the
appended claims.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “circuit,” “module” or “system.” Furthermore, aspects of
the present invention may take the form of a computer pro-
gram product embodied in one or more computer-readable
medium(s) having computer-readable program code embod-
ied thereon.

Any combination of one or more computer-readable medi-
um(s) may be utilized. The computer-readable medium may
be a computer-readable signal medium or a computer-read-
able storage medium. A computer-readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer-readable storage medium would include the
following: a portable computer diskette, a hard disk, a random
access memory (RAM), aread-only memory (ROM), an eras-
able programmable read-only memory (EPROM or Flash
memory), a portable compact disc read-only memory (CD-
ROM), an optical storage device, a magnetic storage device,
orany suitable combination of the foregoing. In the context of
this document, a computer-readable storage medium may be
any tangible storage medium that can contain, or store a
program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer-readable signal medium may include a propa-
gated data signal with computer-readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter-readable signal medium may be any computer-readable
medium that is not a computer-readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device. Program code embodied on a computer-
readable signal medium may be transmitted using any appro-
priate medium, including but not limited to wireless, wireline,
optical fiber cable, RF, etc., or any suitable combination of the
foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language

35

40

45

16

or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be stored in a
computer-readable storage medium that can direct a com-
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer-readable medium produce
an article of manufacture including instructions which imple-
ment the function/act specified in the flowchart and/or block
diagram block or blocks. The computer program instructions
may also be loaded onto a computer, other programmable
data processing apparatus, or other devices to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other devices to produce a com-
puter implemented process such that the instructions which
execute on the computer or other programmable apparatus
provide processes for implementing the functions/acts speci-
fied in the flowchart and/or block diagram block or blocks.

As will be further appreciated, the processes in embodi-
ments of the present invention may be implemented using any
combination of software, firmware or hardware. As a prepa-
ratory step to practicing the invention in software, the pro-
gramming code (whether software or firmware) will typically
be stored in one or more machine readable storage mediums
such as fixed (hard) drives, diskettes, optical disks, magnetic
tape, semiconductor memories such as ROMs, PROMs, etc.,
thereby making an article of manufacture in accordance with
the invention. The article of manufacture containing the pro-
gramming code is used by either executing the code directly
from the storage device, by copying the code from the storage
device into another storage device such as a hard disk, RAM,
etc., or by transmitting the code for remote execution using
transmission type media such as digital and analog commu-
nication links. The methods ofthe invention may be practiced
by combining one or more machine-readable storage devices
containing the code according to the present invention with
appropriate processing hardware to execute the code con-
tained therein. An apparatus for practicing the invention could
be one or more processing devices and storage systems con-
taining or having network access to program(s) coded in
accordance with the invention.

Thus, it is important that while an illustrative embodiment
of the present invention is described in the context of a fully

US 9,342,353 B2

17

functional computer (server) system with installed (or
executed) software, those skilled in the art will appreciate that
the software aspects of an illustrative embodiment of the
present invention are capable of being distributed as a pro-
gram product in a variety of forms, and that an illustrative
embodiment of the present invention applies equally regard-
less of the particular type of media used to actually carry out
the distribution.

While the invention has been described with reference to
exemplary embodiments, it will be understood by those
skilled in the art that various changes may be made and
equivalents may be substituted for elements thereof without
departing from the scope of the invention. In addition, many
modifications may be made to adapt a particular system,
device or component thereof'to the teachings of the invention
without departing from the essential scope thereof. There-
fore, it is intended that the invention not be limited to the
particular embodiments disclosed for carrying out this inven-
tion, but that the invention will include all embodiments fall-
ing within the scope of the appended claims. Moreover, the
use of the terms first, second, etc. do not denote any order or
importance, but rather the terms first, second, etc. are used to
distinguish one element from another.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below, if any, are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiments were chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

What is claimed is:

1. A method for selecting an information service imple-
mentation, comprising:

receiving, at a data processing system that functions as a

shared interface for multiple tenants, a service request
that includes a tenant identifier that uniquely identifies a
calling tenant;

selecting, by the data processing system, transformation

logic provided by a specific virtual machine to service
the service request based on the received tenant identi-
fier to implement a tenant specific service level agree-
ment for the calling tenant;

selecting, by the data processing system, one or more data

sources and one or more data targets for the service
request based on the received tenant identifier to imple-
ment the tenant specific service level agreement for the
calling tenant;

25

30

40

45

50

55

18

processing, by the data processing system, data from the
selected data sources using the selected transformation
logic, wherein the selected transformation logic imple-
ments one or more algorithms that are used to transform
the data; and
storing, by the data processing system, the processed data
at the selected data targets.
2. The method of claim 1, wherein the tenant identifier
corresponds to a user identifier, a user password, a security
token, or a certificate.
3. The method of claim 1, wherein the tenant identifier is
derived from a payload or context of the service request or a
mapping of a user to the calling tenant.
4. The method of claim 1, wherein the transformation logic
to service the service request is selected at runtime.
5. The method of claim 1, wherein the selecting, by the data
processing system, transformation logic to service the service
request based on the received tenant identifier further com-
prises:
selecting, by the data processing system, a specific agent to
process the service request based on the received tenant
identifier.
6. The method of claim 1, wherein the selecting, by the data
processing system, one or more data sources and one or more
data targets for the service request based on the received
tenant identifier further comprises:
selecting, by the data processing system, one of a shared
database for multiple tenants, a shared database with
separate schemas for different tenants, or a shared data-
base with shared schema for multiple tenants for the
service request based on the received tenant identifier.
7. The method of claim 1, wherein the selecting, by the data
processing system, one or more data sources and one or more
data targets for the service request based on the received
tenant identifier further comprises:
selecting, by the data processing system, one of a shared
database for multiple tenants, a shared database with
separate schemas for different tenants, or a shared data-
base with shared schema for multiple tenants for the
service request based on the received tenant identifier
and a service level agreement for the calling tenant.
8. A computer program product for selecting an informa-
tion service implementation, the computer program product
comprising:
a computer-readable storage device having computer-read-
able program code embodied thereon, wherein the com-
puter-readable program code, when executed by a data
processing system that functions as a shared interface
for multiple tenants, causes the data processing system
to:
receive a service request that includes a tenant identifier
that uniquely identifies a calling tenant;

select transformation logic provided by a specific virtual
machine to service the service request based on the
received tenant identifier to implement a tenant spe-
cific service level agreement for the calling tenant;

select one or more data sources and one or more data
targets for the service request based on the received
tenant identifier to implement the tenant specific ser-
vice level agreement for the calling tenant;

process data from the selected data sources using the
selected transformation logic, wherein the selected
transformation logic implements one or more algo-
rithms that are used to transform the data; and

store the processed data at the selected data targets.

US 9,342,353 B2

19

9. The computer program product of claim 8, wherein the
tenant identifier corresponds to a user identifier, a user pass-
word, a web services security (WSS) token, or a certificate.

10. The computer program product of claim 8, wherein the
tenant identifier is derived from a payload or context of the
service request or a mapping of a user to the calling tenant.

11. The computer program product of claim 8, wherein the
transformation logic to service the service request is selected
at runtime.

12. The computer program product of claim 8, wherein the
computer-readable program code, when executed by a data
processing system, further causes the data processing system
to:

select a specific agent to process the service request based

on the received tenant identifier.

13. The computer program product of claim 8, wherein the
computer-readable program code, when executed by a data
processing system, further causes the data processing system
to:

select one of a shared database for multiple tenants, a

shared database with separate schemas for different ten-
ants, or a shared database with shared schema for mul-
tiple tenants for the service request based on the received
tenant identifier.

14. The computer program product of claim 8, wherein the
computer-readable program code, when executed by a data
processing system, further causes the data processing system
to:

select one of a shared database for multiple tenants, a

shared database with separate schemas for different ten-
ants, or a shared database with shared schema for mul-
tiple tenants for the service request based on the received
tenant identifier and a service level agreement for the
calling tenant.

15. A data processing system that functions as a shared
interface for multiple tenants, comprising:

a memory; and

a processor core coupled to the memory, wherein the pro-

cessor core is configured to:

10

20

25

30

35

20

receive a service request that includes a tenant identifier
that uniquely identifies a calling tenant;

select transformation logic provided by a specific virtual
machine to service the service request based on the
received tenant identifier to implement a tenant spe-
cific service level agreement for the calling tenant;

select one or more data sources and one or more data
targets for the service request based on the received
tenant identifier to implement the tenant specific ser-
vice level agreement for the calling tenant;

process data from the selected data sources using the
selected transformation logic, wherein the selected
transformation logic implements one or more algo-
rithms that are used to transform the data; and

store the processed data at the selected data targets.

16. The data processing system of claim 15, wherein the
tenant identifier corresponds to a user identifier, a user pass-
word, a web services security (WSS) token, or a certificate.

17. The data processing system of claim 15, wherein the
tenant identifier is derived from a payload or context of the
service request or a mapping of a user to the calling tenant.

18. The data processing system of claim 15, wherein the
transformation logic to service the service request is selected
at runtime.

19. The data processing system of claim 15, wherein the
processor core is further configured to:

select a specific agent to process the service request based

on the received tenant identifier.

20. The data processing system of claim 15, wherein the
processor core is further configured to:

select one of a shared database for multiple tenants, a

shared database with separate schemas for different ten-
ants, or a shared database with shared schema for mul-
tiple tenants for the service request based on the received
tenant identifier and a service level agreement for the
calling tenant.

